Future-Proofing Your Security Infrastructure

Cybersecurity is getting more complicated every day. Why is this happening? Organizations are seeing their infrastructure becoming more complex, attack surfaces growing dramatically, and threats from cybercriminals evolving. What’s more, the reliance on public cloud, private cloud, hybrid cloud, and multi-cloud environments — coupled with more remote workers — has expanded the security perimeter for many organizations.

Even before COVID burst onto the scene, cybercrime was on the rise. Instead of a lone hacker sitting in a dark basement, contemporary cyber threat actors are part of organized crime rings.

All these trends underscore the importance of future-proofing your security infrastructure to combat major security threats and protect your mission-critical data.

Cyberattacks Are on the Rise: Data Tells the Tale

From Solar Winds to the Colonial Pipeline attack, cybercriminals have been making headlines in recent years. In addition, statistics reveal that cyberattacks are an ever-growing problem:

Attacks are more prevalent, and they are getting more expensive. The average cost of a data breach now exceeds $4.2 million per incident and can cause recurring problems for years. On average, more than $2.9 million is lost to cybercrime every minute.

Despite increased spending on cybersecurity and best efforts by chief information security officers (CISOs) and information technology (IT) teams, nearly 80% of senior IT leaders believe their organizations lack sufficient protection against cyber-attacks. With the rising threat, every organization needs a strategy to future-proof its infrastructure.

What is Future-Proofing?

Future-proofing your cyber security creates a robust foundation that can evolve as your organization grows and new cyber threats emerge. This includes continually assessing your infrastructure for security gaps, proactively identifying threats, and remediating potential weaknesses.

Future-proof planning encompasses the totality of your security efforts. Failure to plan puts your entire organization at risk. You simply cannot afford to be left unprotected against current and future threats.

What Can (and Can’t) Be Future-Proofed within Your Technology Infrastructure?

What makes future-proofing technology challenging is that we don’t know exactly what the IT landscape will look like in the future. A few years ago, who knew we would see the explosion in the number of remote employees  — often working on unprotected home networks.

The good news is that the cloud has given us tremendous flexibility and helps us future-proof without overspending right now on capacity we may or may not need. With nearly infinite scalability, cloud applications have allowed organizations to adapt and grow as necessary. However, it’s also put more sensitive and proprietary data online than ever before and made IT infrastructure more complex.

To future-proof your infrastructure, you need an approach for visualizing, monitoring, and managing security risks across every platform and connection. This lets you expand your security perimeter as your network grows and proactively identify new exposure as you evolve.

How Can Organizations Prepare for the Future?

Security needs to be part of every company’s DNA. Before you make any business decisions, you should run through security filters to ensure the right safeguards are in place. It takes a security culture that goes beyond the IT departments to future-proof your organization.

With data in the cloud, there’s a shared security responsibility. For example, public cloud providers take responsibility for their cloud security, but they are not responsible for your apps, servers, or data security. Too many companies are still relying on cloud providers to protect assets and abdicating their part of the shared security model.

Between multi-cloud, hybrid cloud environments, and a mix of cloud and on-prem applications, it’s become increasingly difficult to track and manage security across every platform. Many security tools only work in one of these environments, so piecing together solutions is also challenging.

For example, do you know the answers to these questions:

  • What resources do we have across all our public cloud and on-premises environments?
  • Are any of these resources unintentionally exposed to the internet?
  • What access is possible within and between cloud and on-premises environments?
  • Do our cloud deployments meet security best practices?
  • How do we validate our cloud network segmentation policies?
  • Are we remediating the riskiest vulnerabilities in the cloud first?

An in-depth visualization of the topology and hierarchy of your infrastructure can uncover vulnerabilities, identify exposure, and provide targeted remediation strategies.

You also need a cloud security solution to identify every resource connected to the internet. Whether you’re using AWS, Microsoft Azure, Google Cloud, Oracle Cloud, or other public cloud resources along with private cloud and on-prem resources, you need a holistic view of security.

Traditional security information and event management (SEIM) systems often produce a large volume of data, making it unwieldy to identify and isolate the highest priority concerns. You need a network model across all resources to accelerate network incident response and quickly locate any compromised device on the network.

Another necessity is continuous penetration tests to measure your state of readiness and re-evaluate your security posture. This helps future-proof your security as you add resources and new threats emerge.

Create a Secure Future for Your Organization

Creating a secure future for your organization is essential. As IT infrastructure and connectivity become more complex, attack surfaces continue to grow, and cybercriminals evolve their tactics, the risks are too great for your company, customers, and career not to build a secure foundation. You need to do more than plan your response to an incident and must know how to prevent cyberattacks with proactive security measures.

Secure all your network environments — public clouds, private clouds, and on-premises — in one comprehensive, dynamic visualization. That’s Red Seal.

RedSeal — through its cloud security solution and professional services — helps government agencies and Global 2000 companies measurably reduce their cyber risk by showing them what’s in all their network environments and where resources are exposed to the internet. RedSeal verifies that networks align with security best practices, validates network segmentation policies, and continuously monitors compliance with policies and regulations.

Contact Red Seal today to take a test drive.

Mitigating Cloud Security’s Greatest Risk: Exposure

Cloud security is complex and distributed. Implementing security controls across on-premise environments traditionally sits with the information security team, but in the cloud, the responsibility could be distributed across developers, DevOps and InfoSec teams. DevOps and developers don’t primarily focus on security, and the impact is often seen as an increase in misconfigurations introducing the risk of breaches.

These security challenges in the cloud have become so prevalent that Gartner has defined cloud security posture management (CSPM) as a new category of security products designed to identify misconfiguration issues and risks in the cloud. CSPM tools today are relied on to provide visibility and compliance into the cloud infrastructure but still haven’t been able to address this issue at scale for InfoSec teams. These teams require solutions that can provide risk-based prioritized remediations in an automated way to handle the cloud scale and complexity. To determine which issues to remediate first, the InfoSec teams need to identify critical resources with unintended and accidental exposure to the internet and other untrusted parts of their cloud.

Calculating Exposure Considering All Security Controls

Whether they are on-prem or in the cloud, security professionals worry about getting breached. One recent report said 69% of organizations admit they had experienced at least one cyber-attack that started by exploiting an unknown or unmanaged internet-facing asset. Bad actors can now simply scan the perimeter of your cloud, look for exposed things and get into your network this way.

Cloud security providers (CSPs) like Amazon Web Service and Microsoft Azure have attempted to solve security by developing their own sets of controls, ranging from implementing security groups and network access control lists (NACLs) to developing their own native network firewalls.

Cloud-first companies often rely on these native tools from the CSPs, but for others who aren’t as far along on their cloud journey, making the transition from traditional on-prem to cloud workloads means pulling along their network security practitioners with them. These teams, who often aren’t cloud experts, are responding by deploying third-party firewalls and load balancers in the cloud due to their longstanding familiarity with them from the on-prem world.

Furthermore, the rise of application containerization with Kubernetes (and its corresponding flavors from AWS, Azure and Google Cloud) allows additional security controls such as pod security policies and ingress controllers.

These security controls are invaluable tools for security teams scrambling to secure their sprawling cloud environments and some under the control of development and DevOps teams. Still, they are largely unaccounted for by current CSPM tools when attempting to assess unintended exposure risk.

Current CSPM Solutions Don’t Accurately Calculate Access

Existing solutions look for misconfigurations at the compute or container level but don’t truly understand end-to-end access from critical resources to an untrusted network. They are essentially calling into the APIs of CSPs, and so if the setting in AWS for a particular subnet equals “public,” the tool believes there is exposure to the internet. That’s not necessarily true because a security team may have other controls in place, like a 3rd party firewall or Kubernetes security policy that successfully prevents access, or the security control is not in the path to the critical resources and not protecting them.

The result is that already short-staffed security teams are spending their days chasing security issues that do not impact the organization the most. The question to ask of today’s CSPM products is whether they are repeating data from CSPs based on their settings or accurately calculating effective reachability to their critical resources (and through which specific controls). Security teams need accurate and complete information to inform their remediation options, which can identify CSP-native security groups to specific ports and protocols controlling the access that may allow exposure to occur.

Increasing cloud complexity is making security as challenging as ever. The ability to quickly identify at-risk resources would go a long way in preventing many potential data breaches. Still, the approach that current tools take is incomplete and disregards much of what security teams are already doing to address the problem. Tools need to account for all security controls in place if security teams are to have truly accurate information on which to act.

For more information on RedSeal Stratus, our new CSPM solution, check out our website or sign up for our Early Adopters program.

Surviving the Worst-Case Scenario: Best Practices for Incident Response

There’s no way around it: Cyberattacks are escalating. According to data from the Identity Theft Resource Center (ITRC), the number of reported data breaches from January to September 2021 exceeded the total volume of breaches in 2020 by 17 percent — and with threat vectors such as ransomware and phishing on the rise, this number isn’t going anywhere but up.

What does this mean? It’s a matter of when, not if, when it comes to network compromise, and companies can no longer assume that security frameworks offer invincibility from evolving cyberattack trends. Instead, they need an approach designed to help them survive the work-case scenario — and come out stronger on the other side.

This is the role of robust cybersecurity incident response (IR) plans. Here’s what you need to know about how these plans work, where they can help, and what steps are necessary for effective implementation.

What is a Cybersecurity Incident Response Plan?

A cybersecurity incident response plan provides a framework for teams to follow in the event of a cyber incident or attack. Research firm Gartner defines an IR plan as something “formulated by an enterprise to respond to potentially catastrophic, computer-related incidents such as viruses or hackers.”

While there are no one-size-fits-all approaches to creating a cybersecurity incident response plan, common components include:

  • Creating an overall strategy to mitigate risk
  • Identifying potential threat vectors
  • Assigning specific tasks to team members
  • Testing the plan regularly to ensure effective operation.

It’s also worth noting that cyber incident response plans play a role in regulatory compliance. With companies now handling large volumes of financial, personal, and health information from various sources, alignment with compliance expectations requires companies to adopt the mandate of “due diligence.” That is, they must take every reasonable precaution to protect data at rest, in transit, and in use. While businesses can’t avoid every cyberattack, lacking due diligence can lead to legal and regulatory challenges. Robust incident response frameworks help ensure organizations are meeting current compliance goals.

How can a Strong Cyberattack Incident Response Plan Help Put the House Back Together?

A robust IR plan helps put your digital house back together by providing a pathway from initial incident detection to eventual remediation. This is critical because when incidents occur, panic and fear are common responses: Teams want to do everything they can to get networks back on track but simply throwing everything you have at the problem — all at once — often leads to process overlap and policy confusion.

By creating a cyberattack incident response plan that lays out a specific order of events when threats are detected and assigns key tasks to staff, teams can respond in unison when attacks occur. For example, one employee may be responsible for identifying the source of the threat, while another looks to quarantine the affected area. Other team members may be tasked with informing C-suite members about what’s happening and ensuring that backup data is safe from harm.

The Phases of an Incident Response Plan: Timing is Everything

Cyber incidents happen without warning and in real-time — they don’t wait for companies to ready their defenses and prepare for an attack. As a result, timing is everything. Businesses must be ready to respond at a moment’s notice when attacks occur to mitigate the overall impact and get systems back up and running ASAP.

To help streamline this process. The National Institute of Standards and Technology (NIST) defines four key phases:

  1. Preparation speaks to the actions taken before an attack occurs. These include regular network evaluations such as vulnerability scans and penetration tests, along with the deployment of protective tools such as encryption software, failover backups, and automated incident analysis tools.
  2. Next is detection and analysis. This includes determining primary attack vectors — such as emails, web applications, brute-force efforts such as DDoS or improper network usage by employees — along with identifying and analyzing signs of compromise such as network performance drops, antivirus warnings, or unusual traffic amounts.
  3. Containment, Eradication, and Recovery policies determine where attack data will be stored for analysis and debriefing, while eradication looks to remove malware code or breached user accounts once attacks are under control. Recovery focuses on bringing systems back online using a staged approach to ensure no threats remain.
  4. Finally, post-incident activity asks the question: What did we learn? By using data collected during the attack, companies can assess what information was needed sooner to improve response, what additional steps might speed recovery, and what steps they can take to prevent future incidents.

Top Tips for Managing Collateral Damage After an Attack

After attacks occur and incident response plans activate, it’s critical to manage collateral damage and get back on track. Five best practices include:

#1 Prioritize Visibility

The more you know, the better prepared you are to respond when attacks occur. By prioritizing network visibility, your team can discover what they don’t know and take appropriate action.

#2 Define Recovery Times

Recovery point objectives (RPOs) and recovery time objectives (RTOs) help set goals for getting back on track and provide a finite resolution to the IR process.

#3 Seek Out Answers

While successfully mitigating an attack offers business value, managing long-term collateral damage means looking for answers about what happened, why, and what can be done to prevent similar breaches in the future.

#4 Leverage Active Backups

Multiple local and cloud backups can help get your systems back up and running. By logically segmenting them from operational networks, you can significantly reduce their risk of compromise and streamline the recovery process.

#5 Practice, Practice, Practice

As noted by the Open Web Application Security Project (OWASP), practice is paramount to ensure IR plans work as intended. From regular drills to simulated, unscheduled attacks, the more you practice your cybersecurity incident response plan, the better.

Surviving — and Thriving — After the Worst-Case Scenario

While the goal of cybersecurity planning is to help companies survive the brunt of an attack and come out the other side relatively unscathed, effective IR response offers actionable post-incident threat data to help enterprises reduce the risk of future attacks. Intelligent network modeling from RedSeal, meanwhile, provides the insight and integrations you need to take action and thrive in the wake of cyberattacks quickly.

By creating a comprehensive model of your network across cloud, hybrid and virtual environments, teams can quickly locate compromised devices, determine which assets are accessible, and take steps to stop attackers in their tracks. Integration with IBM QRader, Splunk Adaptive Response Initiative, and ArcSight, meanwhile, provides end-to-end situational awareness for improved response.

Survive the worst-case scenario — and come out better on the other side — with an in-depth cyberattack incident response plan. See how RedSeal can help.